/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include "sot/stg.hxx" #include "stgelem.hxx" #include "stgcache.hxx" #include "stgstrms.hxx" #include "stgdir.hxx" #include "stgio.hxx" static const sal_uInt16 nMaxLegalStr = 31; static const sal_uInt8 cStgSignature[ 8 ] = { 0xD0,0xCF,0x11,0xE0,0xA1,0xB1,0x1A,0xE1 }; ////////////////////////////// struct ClsId SvStream& ReadClsId( SvStream& r, ClsId& rId ) { r.ReadUInt32( rId.Data1 ) .ReadUInt16( rId.Data2 ) .ReadUInt16( rId.Data3 ) .ReadUChar( rId.Data4[0] ) .ReadUChar( rId.Data4[1] ) .ReadUChar( rId.Data4[2] ) .ReadUChar( rId.Data4[3] ) .ReadUChar( rId.Data4[4] ) .ReadUChar( rId.Data4[5] ) .ReadUChar( rId.Data4[6] ) .ReadUChar( rId.Data4[7] ); return r; } SvStream& WriteClsId( SvStream& r, const ClsId& rId ) { return r .WriteUInt32( rId.Data1 ) .WriteUInt16( rId.Data2 ) .WriteUInt16( rId.Data3 ) .WriteUChar( rId.Data4[0] ) .WriteUChar( rId.Data4[1] ) .WriteUChar( rId.Data4[2] ) .WriteUChar( rId.Data4[3] ) .WriteUChar( rId.Data4[4] ) .WriteUChar( rId.Data4[5] ) .WriteUChar( rId.Data4[6] ) .WriteUChar( rId.Data4[7] ); } ///////////////////////////// class StgHeader StgHeader::StgHeader() : nVersion( 0 ) , nByteOrder( 0 ) , nPageSize( 0 ) , nDataPageSize( 0 ) , bDirty( sal_uInt8(false) ) , nFATSize( 0 ) , nTOCstrm( 0 ) , nReserved( 0 ) , nThreshold( 0 ) , nDataFAT( 0 ) , nDataFATSize( 0 ) , nMasterChain( 0 ) , nMaster( 0 ) { memset( cSignature, 0, sizeof( cSignature ) ); memset( &aClsId, 0, sizeof( ClsId ) ); memset( cReserved, 0, sizeof( cReserved ) ); memset( nMasterFAT, 0, sizeof( nMasterFAT ) ); } void StgHeader::Init() { memcpy( cSignature, cStgSignature, 8 ); memset( &aClsId, 0, sizeof( ClsId ) ); nVersion = 0x0003003B; nByteOrder = 0xFFFE; nPageSize = 9; // 512 bytes nDataPageSize = 6; // 64 bytes bDirty = sal_uInt8(false); memset( cReserved, 0, sizeof( cReserved ) ); nFATSize = 0; nTOCstrm = 0; nReserved = 0; nThreshold = 4096; nDataFAT = 0; nDataFATSize = 0; nMasterChain = STG_EOF; SetTOCStart( STG_EOF ); SetDataFATStart( STG_EOF ); for( short i = 0; i < cFATPagesInHeader; i++ ) SetFATPage( i, STG_FREE ); } bool StgHeader::Load( StgIo& rIo ) { bool bResult = false; if ( rIo.GetStrm() ) { SvStream& r = *rIo.GetStrm(); bResult = Load( r ); bResult = ( bResult && rIo.Good() ); } return bResult; } bool StgHeader::Load( SvStream& r ) { r.Seek( 0L ); r.Read( cSignature, 8 ); ReadClsId( r, aClsId ); // 08 Class ID r.ReadInt32( nVersion ) // 1A version number .ReadUInt16( nByteOrder ) // 1C Unicode byte order indicator .ReadInt16( nPageSize ) // 1E 1 << nPageSize = block size .ReadInt16( nDataPageSize ); // 20 1 << this size == data block size r.SeekRel( 10 ); r.ReadInt32( nFATSize ) // 2C total number of FAT pages .ReadInt32( nTOCstrm ) // 30 starting page for the TOC stream .ReadInt32( nReserved ) // 34 .ReadInt32( nThreshold ) // 38 minimum file size for big data .ReadInt32( nDataFAT ) // 3C page # of 1st data FAT block .ReadInt32( nDataFATSize ) // 40 # of data FATpages .ReadInt32( nMasterChain ) // 44 chain to the next master block .ReadInt32( nMaster ); // 48 # of additional master blocks for( short i = 0; i < cFATPagesInHeader; i++ ) r.ReadInt32( nMasterFAT[ i ] ); return (r.GetErrorCode() == ERRCODE_NONE) && Check(); } bool StgHeader::Store( StgIo& rIo ) { if( !bDirty ) return true; SvStream& r = *rIo.GetStrm(); r.Seek( 0L ); r.Write( cSignature, 8 ); WriteClsId( r, aClsId ); // 08 Class ID r.WriteInt32( nVersion ) // 1A version number .WriteUInt16( nByteOrder ) // 1C Unicode byte order indicator .WriteInt16( nPageSize ) // 1E 1 << nPageSize = block size .WriteInt16( nDataPageSize ) // 20 1 << this size == data block size .WriteInt32( 0 ).WriteInt32( 0 ).WriteInt16( 0 ) .WriteInt32( nFATSize ) // 2C total number of FAT pages .WriteInt32( nTOCstrm ) // 30 starting page for the TOC stream .WriteInt32( nReserved ) // 34 .WriteInt32( nThreshold ) // 38 minimum file size for big data .WriteInt32( nDataFAT ) // 3C page # of 1st data FAT block .WriteInt32( nDataFATSize ) // 40 # of data FAT pages .WriteInt32( nMasterChain ) // 44 chain to the next master block .WriteInt32( nMaster ); // 48 # of additional master blocks for( short i = 0; i < cFATPagesInHeader; i++ ) r.WriteInt32( nMasterFAT[ i ] ); bDirty = sal_uInt8(!rIo.Good()); return !bDirty; } static bool lcl_wontoverflow(short shift) { return shift >= 0 && shift < (short)sizeof(short) * 8 - 1; } static bool isKnownSpecial(sal_Int32 nLocation) { return (nLocation == STG_FREE || nLocation == STG_EOF || nLocation == STG_FAT || nLocation == STG_MASTER); } // Perform thorough checks also on unknown variables bool StgHeader::Check() { return memcmp( cSignature, cStgSignature, 8 ) == 0 && (short) ( nVersion >> 16 ) == 3 && nPageSize == 9 && lcl_wontoverflow(nPageSize) && lcl_wontoverflow(nDataPageSize) && nFATSize > 0 && nTOCstrm >= 0 && nThreshold > 0 && ( isKnownSpecial(nDataFAT) || ( nDataFAT >= 0 && nDataFATSize > 0 ) ) && ( isKnownSpecial(nMasterChain) || nMasterChain >=0 ) && nMaster >= 0; } sal_Int32 StgHeader::GetFATPage( short n ) const { if( n >= 0 && n < cFATPagesInHeader ) return nMasterFAT[ n ]; else return STG_EOF; } void StgHeader::SetFATPage( short n, sal_Int32 nb ) { if( n >= 0 && n < cFATPagesInHeader ) { if( nMasterFAT[ n ] != nb ) bDirty = sal_uInt8(true), nMasterFAT[ n ] = nb; } } void StgHeader::SetTOCStart( sal_Int32 n ) { if( n != nTOCstrm ) bDirty = sal_uInt8(true), nTOCstrm = n; } void StgHeader::SetDataFATStart( sal_Int32 n ) { if( n != nDataFAT ) bDirty = sal_uInt8(true), nDataFAT = n; } void StgHeader::SetDataFATSize( sal_Int32 n ) { if( n != nDataFATSize ) bDirty = sal_uInt8(true), nDataFATSize = n; } void StgHeader::SetFATSize( sal_Int32 n ) { if( n != nFATSize ) bDirty = sal_uInt8(true), nFATSize = n; } void StgHeader::SetFATChain( sal_Int32 n ) { if( n != nMasterChain ) bDirty = sal_uInt8(true), nMasterChain = n; } void StgHeader::SetMasters( sal_Int32 n ) { if( n != nMaster ) bDirty = sal_uInt8(true), nMaster = n; } ///////////////////////////// class StgEntry bool StgEntry::Init() { memset( nName, 0, sizeof( nName ) ); nNameLen = 0; cType = 0; cFlags = 0; nLeft = 0; nRight = 0; nChild = 0; memset( &aClsId, 0, sizeof( aClsId ) ); nFlags = 0; nMtime[0] = 0; nMtime[1] = 0; nAtime[0] = 0; nAtime[1] = 0; nPage1 = 0; nSize = 0; nUnknown = 0; SetLeaf( STG_LEFT, STG_FREE ); SetLeaf( STG_RIGHT, STG_FREE ); SetLeaf( STG_CHILD, STG_FREE ); SetLeaf( STG_DATA, STG_EOF ); return true; } static OUString ToUpperUnicode( const OUString & rStr ) { // I don't know the locale, so en_US is hopefully fine static CharClass aCC( LanguageTag( com::sun::star::lang::Locale( "en", "US", "" )) ); return aCC.uppercase( rStr ); } bool StgEntry::SetName( const OUString& rName ) { // I don't know the locale, so en_US is hopefully fine aName = ToUpperUnicode( rName ); if(aName.getLength() > nMaxLegalStr) { aName = aName.copy(0, nMaxLegalStr); } sal_uInt16 i; for( i = 0; i < rName.getLength() && i <= nMaxLegalStr; i++ ) { nName[ i ] = rName[ i ]; } while (i <= nMaxLegalStr) { nName[ i++ ] = 0; } nNameLen = ( rName.getLength() + 1 ) << 1; return true; } sal_Int32 StgEntry::GetLeaf( StgEntryRef eRef ) const { sal_Int32 n = -1; switch( eRef ) { case STG_LEFT: n = nLeft; break; case STG_RIGHT: n = nRight; break; case STG_CHILD: n = nChild; break; case STG_DATA: n = nPage1; break; } return n; } void StgEntry::SetLeaf( StgEntryRef eRef, sal_Int32 nPage ) { switch( eRef ) { case STG_LEFT: nLeft = nPage; break; case STG_RIGHT: nRight = nPage; break; case STG_CHILD: nChild = nPage; break; case STG_DATA: nPage1 = nPage; break; } } void StgEntry::SetClassId( const ClsId& r ) { memcpy( &aClsId, &r, sizeof( ClsId ) ); } void StgEntry::GetName( OUString& rName ) const { sal_uInt16 n = nNameLen; if( n ) n = ( n >> 1 ) - 1; rName = OUString(nName, n); } // Compare two entries. Do this case-insensitive. sal_Int32 StgEntry::Compare( const StgEntry& r ) const { if (r.nNameLen != nNameLen) return r.nNameLen > nNameLen ? 1 : -1; else return r.aName.compareTo(aName); } // These load/store operations are a bit more complicated, // since they have to copy their contents into a packed structure. bool StgEntry::Load( const void* pFrom, sal_uInt32 nBufSize ) { if ( nBufSize < 128 ) return false; SvMemoryStream r( const_cast(pFrom), nBufSize, StreamMode::READ ); for( short i = 0; i < 32; i++ ) r.ReadUInt16( nName[ i ] ); // 00 name as WCHAR r.ReadUInt16( nNameLen ) // 40 size of name in bytes including 00H .ReadUChar( cType ) // 42 entry type .ReadUChar( cFlags ) // 43 0 or 1 (tree balance?) .ReadInt32( nLeft ) // 44 left node entry .ReadInt32( nRight ) // 48 right node entry .ReadInt32( nChild ); // 4C 1st child entry if storage ReadClsId( r, aClsId ); // 50 class ID (optional) r.ReadInt32( nFlags ) // 60 state flags(?) .ReadInt32( nMtime[ 0 ] ) // 64 modification time .ReadInt32( nMtime[ 1 ] ) // 64 modification time .ReadInt32( nAtime[ 0 ] ) // 6C creation and access time .ReadInt32( nAtime[ 1 ] ) // 6C creation and access time .ReadInt32( nPage1 ) // 74 starting block (either direct or translated) .ReadInt32( nSize ) // 78 file size .ReadInt32( nUnknown ); // 7C unknown sal_uInt16 n = nNameLen; if( n ) n = ( n >> 1 ) - 1; if (n > nMaxLegalStr) return false; if ((cType != STG_STORAGE) && ((nSize < 0) || (nPage1 < 0 && !isKnownSpecial(nPage1)))) { // the size makes no sense for the substorage // TODO/LATER: actually the size should be an unsigned value, but in this case it would mean a stream of more than 2Gb return false; } aName = OUString(nName , n); // I don't know the locale, so en_US is hopefully fine aName = ToUpperUnicode( aName ); if(aName.getLength() > nMaxLegalStr) { aName = aName.copy(0, nMaxLegalStr); } return true; } void StgEntry::Store( void* pTo ) { SvMemoryStream r( pTo, 128, StreamMode::WRITE ); for( short i = 0; i < 32; i++ ) r.WriteUInt16( nName[ i ] ); // 00 name as WCHAR r.WriteUInt16( nNameLen ) // 40 size of name in bytes including 00H .WriteUChar( cType ) // 42 entry type .WriteUChar( cFlags ) // 43 0 or 1 (tree balance?) .WriteInt32( nLeft ) // 44 left node entry .WriteInt32( nRight ) // 48 right node entry .WriteInt32( nChild ); // 4C 1st child entry if storage; WriteClsId( r, aClsId ); // 50 class ID (optional) r.WriteInt32( nFlags ) // 60 state flags(?) .WriteInt32( nMtime[ 0 ] ) // 64 modification time .WriteInt32( nMtime[ 1 ] ) // 64 modification time .WriteInt32( nAtime[ 0 ] ) // 6C creation and access time .WriteInt32( nAtime[ 1 ] ) // 6C creation and access time .WriteInt32( nPage1 ) // 74 starting block (either direct or translated) .WriteInt32( nSize ) // 78 file size .WriteInt32( nUnknown ); // 7C unknown } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */